Data science continues to evolve as one of the most promising and in-demand career paths for skilled professionals. Today, successful data professionals understand that they must advance past the traditional skills of analyzing large amounts of data, data mining, and programming skills. In order to uncover useful intelligence for their organizations, data scientists must master the full spectrum of the data science life cycle and possess a level of flexibility and understanding to maximize returns at each phase of the process.
Data Scientist is the one who analyses and interpret complex digital data. While there are several ways to get into a data scientist’s role, the most seamless one is by acquiring enough experience and learning the various data scientist skills. These skills include advanced statistical analyses, a complete understanding of machine learning, data conditioning etc.
Data scientists have become necessary assets and are present in almost all organizations. These professionals are well-rounded, data-driven individuals with high-level technical skills who are capable of building complex quantitative algorithms to organize and synthesize large amounts of information used to answer questions and drive strategy in their organization. This is coupled with the experience in communication and leadership needed to deliver tangible results to various stakeholders across an organization or business.
Reason:
- Improve efficiency by analyzing traffic patterns, weather conditions, and other factors so logistics companies can improve delivery speeds and reduce costs.
- Determine customer churn by analyzing data collected from call centers, so marketing can take action to retain them.
- Improve patient diagnoses by analyzing medical test data and reported symptoms so doctors can diagnose diseases earlier and treat them more effectively.
- Detect fraud in financial services by recognizing suspicious behaviors and anomalous actions.
- Optimize the supply chain by predicting when equipment will break down.
- Improve sales by creating recommendations for customers based upon previous purchases.
Applications for data science
Healthcare
The healthcare sector, especially, receives great benefits from data science applications.
Genetics & Genomics
Data Science applications also enable an advanced level of treatment personalization through research in genetics and genomics. The goal is to understand the impact of the DNA on our health and find individual biological connections between genetics, diseases, and drug response. Data science techniques allow integration of different kinds of data with genomic data in the disease research, which provides a deeper understanding of genetic issues in reactions to particular drugs and diseases. As soon as we acquire reliable personal genome data, we will achieve a deeper understanding of the human DNA. The advanced genetic risk prediction will be a major step towards more individual care.
Medical Image Analysis
Procedures such as detecting tumors, artery stenosis, organ delineation employ various different methods and frameworks like MapReduce to find optimal parameters for tasks like lung texture classification. It applies machine learning methods, support vector machines (SVM), content-based medical image indexing, and wavelet analysis for solid texture classification.
Fraud and Risk Detection
The earliest applications of data science were in Finance. Companies were fed up of bad debts and losses every year. However, they had a lot of data which use to get collected during the initial paperwork while sanctioning loans. They decided to bring in data scientists in order to rescue them out of losses.
Drug Development
The drug discovery process is highly complicated and involves many disciplines. The greatest ideas are often bounded by billions of testing, huge financial and time expenditure. On average, it takes twelve years to make an official submission.
Data science applications and machine learning algorithms simplify and shorten this process, adding a perspective to each step from the initial screening of drug compounds to the prediction of the success rate based on the biological factors. Such algorithms can forecast how the compound will act in the body using advanced mathematical modeling and simulations instead of the “lab experiments”.
Targeted Advertising
If you thought Search would have been the biggest of all data science applications, here is a challenger the entire digital marketing spectrum. Starting from the display banners on various websites to the digital billboards at the airports almost all of them are decided by using data science algorithms.
Virtual assistance for patients and customer support
Optimization of the clinical process builds upon the concept that for many cases it is not actually necessary for patients to visit doctors in person. A mobile application can give a more effective solution by bringing the doctor to the patient instead.
The AI-powered mobile apps can provide basic healthcare support, usually as chatbots. You simply describe your symptoms, or ask questions, and then receive key information about your medical condition derived from a wide network linking symptoms to causes. Apps can remind you to take your medicine on time, and if necessary, assign an appointment with a doctor.